Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

نویسندگان

  • Wei-Wei Pang
  • Ping Zhang
  • Guang-Cai Zhang
  • Ai-Guo Xu
  • Xian-Geng Zhao
چکیده

Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and Collapse of Nanovoids in Tantalum Monocrystals Loaded at High Strain Rate

Shock-induced spall in ductile metals is known to occur by the sequence of nucleation, growth and coalescence of voids, even in high purity monocrystals. However, the atomistic mechanisms involved are still not completely understood. The growth and collapse of nanoscale voids in tantalum are investigated under different stress states and strain rates by molecular dynamics (MD) simulations. Thre...

متن کامل

Damage Behavior in Modern Automotive High Strength Dual Phase Steels During Uniaxial Tensile Deformation

In the present research, damage mechanisms during room temperature uniaxial tensile testing of two different modern high strength dual phase steels,DP780 and DP980, were studied. Detailed microstructural characterization of the strained and sectioned samples was performed by scanning electron microscopy (SEM). The results revealed that interface decohesion, especially at the triple junctions of...

متن کامل

ductile response as the competition between Griffith cleavage and plastic shear at a crack tip. RICE and THOMSON (1974) specifically modeled the shear process as the nucleation of a dislocation from a stressed crack tip. The Rice and Thomson approach

DISLOCATION nucleation from a stressed crack tip is analyzed based on the Peierls concept. A periodic relation between shear stress and atomic shear displacement is assumed to hold along the most highly stressed slip plane emanating from a crack tip. This allows some small slip displacement to occur near the tip in response to small applied loading and, with increase in loading, the incipient d...

متن کامل

Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis - Sinclair Potential

The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair...

متن کامل

High strain rate properties of metals and alloys

The high strain rate dependence of the flow stress of metals and alloys is described from a dislocation mechanics viewpoint over a range beginning from conventional tension/compression testing through split Hopkinson pressure bar (SHPB) measurements to Charpy pendulum and Taylor solid cylinder impact tests and shock loading or isentropic compression experiment (ICE) results. Single crystal and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014